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Partial to Complete Wetting: 
A Microscopic Derivation of the Young Relation 
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This paper is devoted to the study of the Young equation, which gives a connec- 
tion between surface tensions and contact angle. We derive the generalized form 
of this equation for anisotropic models using thermodynamic considerations. In 
two dimensions with SOS-like approximations of the interface, we prove that 
the surface tension may be computed explicitly as a simple integral, which of 
course depends upon the orientation of the interface. This allows a complete 
study of the wetting transition when a constant wall "attraction" is taken into 
account within the SOS and Gaussian models. We therefore give a complete 
analysis of the variation of the contact angle with the temperature for those 
models. It is found that for certain values of the parameters, two wetting 
transitions may successively appear, one at tow temperature and one at high 
temperature, giving the following states: film~troplet film. This study rests upon 
the generalized Young equation, the validity of which is proved for the Gaussian 
model with a constant wall attraction, using microscopic considerations. 

KEY WORDS:  Wetting transition; contact angle; surface tension; SOS 
model; Gaussian model; anisotropic Young equation. 

1. I N T R O D U C T I O N  

Consider a small droplet of a substance B, in coexistence with another sub- 
stance A, which is put in contact with the wall of a container. Two kinds of 
situations may occur (Fig. 1): partial wetting with a contact angle 0 or 
complete wetting with the appearence of a film (0 = 0). If B is sufficiently 
attracted by the wall, then a phase transition from partial to complete 
wetting may be observed under appropriate conditions. 
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The classical way of studying this phenomenon is by use of the Young 
equation 

( T A B  COS 0 ~ (7 A W - -  (T B W  (1) 

which gives the contact angle as a function of the surface tensions; (TaB is 
the free energy per unit area of the A / B  interface, (Tiw is the free energy per 
unit area for contact between the phase i and the wall W. Young's 
derivation of Eq. (1) is to express the equilibrium condition between the 
forces associated to the various surface tensions. 

According to (1), the wetting condition is given by the solution of 

(TaB = ( T a w -  (T B v/ (2) 

The corresponding wetting transition has been much studied in the past 10 
years, particularly after the mean field theory proposed by Cahn. (1) Up to 
now, however, the role of an order parameter has usualy been played by 
the thickness or by the length of the droplet, finite below T w ,  infinite 
above T w .  

The present paper is devoted to a description of droplets and of the 
wetting transition in terms of the more physical order parameter, which is 
the contact angle. We shall not go into the nonequilibrium aspect of this 
phenomenon. 

Let us stress first of all that Eq. ( l)  only applies to isotropic interfaces 
(e.g., fluid systems). Since in statistical mechanics all the discrete models 
are necessarily anisotropic, we first need to derive the generalized form of 
the Young equation. This is done in Section 2, after remarking that the 
shape of a droplet is governed by a Wulff construction, modified by the 
interactions with the wall. Section 3 is devoted to the study of the surface 
tensions for a large class of two-dimensional models, including, for 
instance, solid-on-solid and Gaussian ones. For these two models, we also 
determine the variation of the contact angle with respect to the tem- 
perature for a particular interaction with the wall. This analysis rests upon 
a fundamental relation which gives the free energy of a macroscopic droplet 
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as an integral over local surface tensions. This relationship requires a 
microscopic proof, which is given for the Gaussian model in Section 4. 

Some of the above results were presented at the symposium on 
the statistical mechanics of phase transitions, T~ebofi, Czechoslovakia, 
September 1986. 

2. THE A N I S O T R O P I C  Y O U N G  EQUATION 

Consider a macroscopic droplet of B in coexistence with the phase A, 
in contact with the wall of a container (Fig. 2). For simplicity, we shall 
describe the problem in two dimensions. The equilibrium shape of the 
droplet should be determined by the condition that the free energy of this 
system be a minimum at a fixed and large volume V. This last condition is 
justified from a physical point of view: macroscopic droplets appear to be 
(meta)stable on the appropriate time scale. 

A 
h(x) 

0 L W 

Fig. 2 

Let aAs(O) be the surface tension of a straight A/B interface making an 
angle 0 with a given direction, which is chosen such that 

oA~(o) = ~ A ~ ( - o t  

and which will eventually be the direction of the wall (Fig. 3). 

Fig. 3 

822/47/5-6-15 
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If it makes sense to consider a macroscopic interface A/B (i.e., if the 
fluctuations of the interface are negligible with respect to the length of the 
droplet) and if the function aAs(O) is a known function of 0, one may 
reasonably expect that the free energy of this system is given by 

F(L, IAS) = f'as a A~(O(l)) dl + L(crBw-- ~r Aw ) (3) 

where I~8 is the AB interface and L is the length of the droplet measured 
on the wall. 

The shape of the droplet is therefore obtained by minimizing F(L, IA8 ) 
at fixed volume 

V = f h(x) dx (4) 

Let us first assume that L also is fixed. The remaining variational 
problem is that of the equilibrium shape of crystals and is solved by the 
Wulff construction. 12"3) The crystal is convex and, in the absence of a wall, 
may be divided into symmetric upper and lower parts, with boundaries 
given by the parametric equations 

_ _ _ 1  d (aAB(O)~ 
x=__ 

-+,~dtg 0 \ cos o } 
(5) 

z=_+~[_  cos0 t g 0 ~ \  c o s 0 J J  + z ~  (6) 

where 2 is reminiscent of a Lagrange multiplier to be determined from 
Eq. (4), and z = z o is the plane of symmetry between the upper and lower 
parts. 

In the presence of a wall, the solution is restricted to z >/0, and z 0 is a 
parameter which varies with L. This has to be taken into account within 
the variational problem. 

For  simplicity, we assume that the direction 0 = 0 is not replaced by a 
sharp edge in the Wulff construction. One then distinguishes three cases: 

1. Complete wetting: If 

a A~(O) <<. ~r AW-- a sw (7) 

then L --* Go minimizes (3) at constant volume and one has a film of B. 

2. Partial wetting: If 

- a ~ ( 0 )  < a A w -  ~r~w< ~ ( 0 )  (8) 
then 

1 
Zo = ~  ( a B w -  O-Aw) (9) 
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minimizes (3) at constant volume. One has droplets whose shape and 
contact angle with the wall may be visualized as follows. Draw a crystal 
shape according to the Wulff construction, say with 2 = 1 so that the total 
height is 20"AB(0 ). Then draw the wall at height ~rAW--aew from the plane 
of symmetry of the crystal shape. The droplet is the part of the crystal 
shape that lies above the wall (see Fig. 4). 

3. Complete drying: If 

(rAw- above< -aA,(0) (10) 

then L = 0 minimizes (3) at constant volume. The droplets of B are not in 
contact with the wall. 

In the case of partial wetting, the contact angle with the wall, 
0~ (0, ~), is given by z = 0  in (6), which can be written as a generalized 
(anisotropic) Young equation 

aA~(O) cos 0 - sin 0 ~ (0) = aAW-- asW (11) 

The left-hand side of (t 1) may have a jump, at some 0 o, from a value 
below CrAw--aBw to a value above aAW--aBW. This corresponds to a facet, 
and 00 is then the contact angle. 

~(e) 

OA~-~ 

J 

Fig. 4. WuIff construction for the droplet shape. 
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These macroscopic properties relative to the shape of the droplet 
(5)-(6) or to the contact angle (11) are of course model-dependent. For a 
given model in statistical mechanics, one therefore has to compute ffAB(O), 
aAW--aBW, and to check the validity of (3) or (11), which implies in 
particular to control the fluctuations of the interface. This will be done in 
the following sections. 

3. S U R F A C E  T E N S I O N S  A N D  C O N T A C T  ANGLES 

The basic definition of the surface tension associated to an interface 
between two bulk phases is just the additional free energy due to the inter- 
face. This definition shows that the surface tension has to be positive. This 
procedure, however, implies a deep knowledge of the system in the 
coexistence region. (5"6) 

That is why a more direct approach to interfaces has been extensively 
studied(7): one starts with a "reasonable" Hamiltonian for the interface, in 
order to derive its properties. 

Classical Hamiltonians for this type of model are the following: 

N - - I  

SOSmodel E(ho. . .hu)=J1 ~ Ihe+~-hel+NJ2 (12) 
i = 0  

N - - 1  

Gaussian model E(ho-.. hN) = J1 ~ (hi+ 1 - hi) 2 + N J2 (13) 
i - - 0  

where he may vary continuously or not. Hereafter we restrict ourselves to 
continuous h variables. The terms N J2 in (12) (13) correspond to the non- 
zero energetic cost of a flat interface. Notice also that the above models do 
not have "overhangs": the height h e is a "univalued" function of i. 

The corresponding surface tension at angle 0 is then defined by 

~a(O) = lim cos 0 log dho.., dh N exp{ - ~ E ( h o . . .  hN)} 
N~oc N _~ 0o 

• b(ho) 3 ( h N - N t g  O) (14) 

For a large class of such models, we shall now prove a theorem which 
generalizes a result of Burton, Cabrera, and Franks (quoted in Ref. 8). 

T h o o r o m  1. For one-dimensional interfaces with a probability 
density proportional to 

exp [ - / 3  u~ 1P(lhi+ ~-hiL) 1 (15) 
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where P(x) is a polynomial bounded from below, the surface tension a(O) 
satisfies 

fla(O)= - c o s  0 . log  dxexp[- f lP( lx+d)+cx]  (16) 
--oO 

where t = tg 0 and c is the solution of 

f +o~ x expE-flP([t + xl ) + cx] dx=O (17) 
- - o 0  

Remark. This theorem can easily be extended to treat models with 
P(x) more general than a polynomial. For instance, it holds within the 
following classes: 

lim x - l P ( x ) =  + ~  (18) 
x ~  q-~3 

o r  

lim 

lim x 1p(x)=ao (19a) 

sup(log x) -J [P(x)  - aox] <~ 0 (19b) 

An interesting example of the last class is given by 

P(x) = Jl(1 + X2) 1/2 (20) 

For the sake of clarity we only consider here polynomials P(x). 

Using 

Proof. Let hj=j.t+Oj; one has for (14) 

fla(0) = lim . . . . .  cos 0 log f &b o f dr162 
N ~ o o  N 

0 

N 1 

Y~ ( <  +i - r = ~ N -  ~o = o 
i = 0  

one also has for any real c 

/~a(0)= lim - - -  

x exp 

COS uO log f f 

- ~  P(lt+Oi+l-r162 ~ (Oe+l-Oi) 6(Oo) O(q)N) 
0 0 
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We shall now prove that there is a suitable choice of c such that the 
constraint ~bN = 0 can be dropped. 

Let us consider the probability density 

f~N(x) = &Do..- &bNexp --fl ~ P(It+~b,+l-~b,I) 
0 

~- C Z ( ~ i + 1 - - ~ i )  (~((90)(~(~JN--X) 
0 

Is ; [ " - '  x &bo..- d~bNexp --/7 52 r ( l t+~bi+~-~b, [ )  
0 

0 

The denominator  can be computed exactly. We therefore get 

Since 

f 
--co 

fia(O)= - cos 0 log exp[-flP(It+xl)+cx]dx 
c o  

cos 0 
+ lim log fr (0) 

N + c o  N N 
(21) 

N 1 

2 
i=0  

where the ~bi+ 1 - ~bi are now independent increments, we may consider ~7~ N 

as a sum of N independent and identically distributed random variables, 
according to the density 

q(x)=exp[-~P(lt+xl)+cx] exp[-~P(lt+xl)+cx] dx 
o o  

If c is chosen such 

f xq(x) dx = 0 

we may use the central limit theorem to obtain 

/ % ~  weakly > Gaussian random variable 
@N N ~  +co 

Since the density o f  ~)N/~ satisfies 

s+.,j.(x) 
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one has 

log f0u(0) 1 t log f~u/,/u(O) - ~ log N 

Due to the boundedness of q(x), we can use a local form of the central 
limit theorem, (9) which guarantees that 

1 - - X  2 
) 

f q ~ N / ~ / N ( x )  N ~ oo (2/r0-2)1/2 exp 2 0 . 2  

uniformy in x, where 

0-2 = f x2q(x) dx 

Going back to Eq. (21), 
proof of the theorem. | 

Using this straightforward 
results. 

For the SOS model (see Fig. 5) 

we get the desired formula (16). This ends the 

prescription, we obtain the following 

E(h0,..., hN) = J2N+ J1 

13aAB(O) = COS 0'  K2 + cos 0 . f ( t )  -- cos 0. log - -  

N - 1  

Ih ,+ , -h , I  (22) 
0 

f ( t ) + 2  
(23) 

K1 

where 

t = t g 0  

f ( t )  = (1 + I~t2) '72- 1 

Ki = flJi 

For the Gaussian model (see Fig. 6) 

N - - 1  

E(ho,. . . ,hu)=UJz+Jl ~ ( h i + t - h i )  2 (24) 
0 

fl0-AB=COS 0 K2+Klt2--~log (25) 

In these models, the entropic part of (~As(0) contains a constant associated 
to the phase space volume; in fact, one should look back at the bulk phases 
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Fig. 5. The  sur face  t ens ion  a(O) as a func t ion  o f  0 for  the c o n t i n u o u s  S.O.S. m o d e l  a t  fixed 

t e m p e r a t u r e / 3  -1 . 

A and B in order to find a phenomenological phase space measure c t . d h  

instead of dh.  For simplicity, we do not include this constant in our 
formulas. 

Let us now consider the effect of the wall. One has to compute the 
difference of surface tensions O'AW--~TBW. This quantity simply expresses 
the fact that the wall favors one species B or A, depending on the sign of 
this quantity. 

The most naive approximation is to consider that the wall free 
energies a A w and a~ve  are just energies without any fluctuation or entropy, 
and are therefore independent of the temperature: 

a A W - -  ~ B W  = 6 (26) 

where 6 is a constant. This approximation may be seen as looking at just 
one macroscopic droplet (or film) on a wall, without any coexisting 
microscopic droplets. 

We shall now examine the wetting condition and the droplet shape for 
the SOS and Gaussian models within this approximation.  
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Fig. 6. The surface tension a(0) as a function of 0 for the Gaussian model. 

3.1. SOS Model  in the C o n s t a n t - W a l l - E n e r g y  Approx imat ion  

The wetting condition is given by 

~ AB(O) = a A W - -  ~ W  (27) 

with (23) and (26), so that the wetting transition temperature/3w ~ satisfies 

log/~ 2 J1 =/? w(6 - J2)  (28) 

There will therefore be: 

1. No wetting transition for 6 -  J2 > J l / 2 e :  wetting film at all/~. 

2. Two wetting transitions for J 1 / 2 e > 6 - J 2 > O :  wetting film at 
small and large/~ and droplets at intermediate/3. 

3. One wetting transition for ~ -  J2 < 0: wetting film at large /3 and 
droplets at small/~. 
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The surprising fact here is to find a film at low temperature for such a 
simple model. No doubt that the crude approximation (26) would corre- 
spond to a very peculiar pinning potential, but it clearly shows the impor- 
tance of the competition between the difference of energies a A w - a s w  and 
the energy of a flat interface J 2 "  The existence of the wetting at low 
temperature indicates that it would be very interesting to consider this 
problem within the bulk approach at low temperature. 

We give in the following a complete study of the contact angle as a 
function of the temperature. Since for the SOS model, 

d ~  AB 
cos OaAB(O) --  sin 0 7 (0) = J 2  - fl 1 log 

we get for the contact angle 

(1 + f lzJ2 t2)l/2 + 1 

i.e., 

(29) 

(1 + f12J~t2)l/2 + 1 
log = f l (J2  - 3)  (30) 

0 arctg {Fe 2 e r a   2 11J2t 

which is plotted in Fig. 7 for typical values of the parameters. 

3.2. Gaussian Model in the Constant-Wall-Energy 
Approximation 

The wetting transition temperature fl ~ is here given by (27), (25), and 
(26), from which we get 

log f i w J 1  = 2 f i w ( 6  - J2)  (32) 
7~ 

We shall therefore recover the same kind of behavior as the one described 
previously for 

- -  J2  > J1 /27 ze  

0 < 6 - -  "]2 < J 1 / 2 ~ e  

6 - J 2 < 0  

Since for the Gaussian model, 

daaB  1 fi 1 ~ (33) cos OaAB(O) --  sin 0 7 (0) = Jz -- J1 tg 2 0 -- ~ log 
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Fig. 7. The contact angle 0 as a function of 2/ f ie  1 for the continuous S.O.S. model within the 
constant  wall energy approximation.  

we obtain 

0 = arctg log 2 (34) 
rc 

which is plotted in Fig. 8. This ends our discussion of the constant-wall- 
energy approximation. 

The next step would be to consider a macroscopic droplet (or film) of 
B on a wall, surrounded by A and by a free amount  of microscopic 
droplets of B. The wall free energy will then depend upon the temperature. 
Such an approach is necessary for a more realistic discussion of the critical 
exponents, and we shall pursue it elsewhere. (1~ 

At the present stage, the main open question is the microscopic 
justification of the starting point (3). This is why we now turn our atten- 
tion to this problem. 
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The contact angle 0 as a function of lflJ~ for the Gaussian model within the constant 
wall energy approximation. 

4. A M I C R O S C O P I C  DERIVATION OF THE 
GENERALIZED Y O U N G  RELATION 

In this section we present a microscopic proof of the generalized 
Young relation (11) within the Gaussian model in the constant-wall-energy 
approximation. The extension of this method of proof to other models will 
be published elsewhere. (11) 

Let us start with the following technical preliminaries. 

kemma 1. Let (XI,...,X,) be a multivariate centered normal 
variable with covariance matrix C. Denote by E(. ) the expectation value of 

with respect to the probability distribution of (X1,...,Xn) and by 
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E(. IX i = 0) the expectation value of-condi t ioned by the event {Xi = 0}; we 
then have for any j = 2, 3,..., n 

E(X~j [ X 1 = 0)  = (1 - p2) E(X~j ) (35) 

where 

Proof. 
be written as 

p = E(XI  Xj)/EE(X~) E(X~j )] i/2 (36) 

It is well known that the probability density of (X l ... X.) can 

After several integrations, we get 

where 
(c)<j = E(X ,X / )  

E(~j) = dxi f dx I X 2 exp - ~ - ~  
coo 

+• 1 2 -1  1 aX2 --~ bXl -- cXjXl)l x[f-2dx, f dXl exp ( -  ~ 

The constraint X1 = 0, however, leads to 

+o~ d x / x 2 e x p  ( 1 2 ' / f+~~  dx/exp ( _  1 2) E( I X I = O ) = j  2(~ ~ 2 ' ) /  J - - ax. , -~ axj 

Since 

( E(a~11) E(XIXj)~ I 

and since the conditional variance on the other hand is 

E()~f [ X- 1 = 0) = 1/a (37) 

we easily obtain the announced result (35). I 

k e m m a  2. Let r ON be Gaussian random variables with joint 
probability density 

ZuleXp - -K ~ (•i+l--•i)  2 ~(r a(~bN)~5 r (38) 
o 

, 1 expE   xi, 
f ( x l  "" x n ) -  (2~z)n/2 (det c) 1/2 ,, 
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and let 

h~ = ci( N -  i)/ N (39) 

with c > 0. Then there exists a > 0 independent of N such that 

P { r  - h i  and ~b2> -h~- - -  and C u _ t >  --h~u_i}>a (40) 

Proof. Let Z denote the characteristic function of an event: 

10 if x is satisfied 
Z(x) = otherwise 

Equation (40) can be written as 

z ( r  - h T )  > a 
\ 1 

where �9 denotes the expectation value o f .  with respect to (38). The dif- 
ficulty is for i near zero and N. We shall therefore decompose 

z ( r  . . . .  IF] ' ] q  ' 
\ 1 NO + 1 N N O 

where N o will be chosen later, depending upon K [cf. (38)], but indepen- 
dent of N. We then use the following property: 

I - [Z(r  - h [ ) > ~ l - ~  Z ( r  -h~) 
i ~ I  i ~ l  

to obtain 

I] z(r -h';) >1 z(Oi> -h:) [I z(Oj > -he 
1 N - -  N o  

N N O - -  1 

- y '  < z ( , L ~ < - h ; ) >  
N O +  1 

(41) 

It is easy to see that the last sum decays exponentially with No with a 
rate depending upon K, but not upon N, because ql i is Gaussian and 
( ~ 2 ) = O ( M i n { i , N - i } )  [see the calculation after (54) below]. It is 
therefore enough to find a constant a > 0 independent of N such that 

z (~b i> -h ; )  17 z(~b,>-h~)  > a  (42) 
N - -  NO 
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for all No, which may be large, but will be kept fixed as N ~  oe. The 
variables r "''ON--No 1 are now integrated out (with the constraint 

0i = 0) and one is left with Gaussian variables, 

Oi+l--Oi for i=0 ,1  ..... N o - 1  and N - N  o ..... N - 1  

We shall now prove that the above two sets of variables decouple as 
N--* Go and that each of them converges in distribution to a random walk 
with independent increments. For this limit law, it is known that (40) is 
satisfied. Inded, as N--* oQ with N o fixed, h~ converges to c-i  and 

/1I~ )~(0i > - c ' i ) l o = X / - ~ > 0  

where ( ' ) o  denotes the expectation for a random walk that starts at 
r 

In order to prove the convergence of the probability distributions, we 
first go back to (38) and replace the zero boundary conditions 3(0o) 6(0N) 
by periodic boundary conditions b(r The corresponding expec- 
tation value will be denoted ( . ) p .  We can then use the Berlin-Kac 
diagonalization (4) and compute asymptotically the covariances of 

r  0i, i=  -No ..... N o -  1 
0o 

For large values of N we get 

((5~+, ,~Kr O(I /N)  --0i)(0j+m--0j)) ,=c % + 

(00(0i+ ~ - -  0 , ) ) p  = O ( 1 )  

(02o)p = O(N) 

The zero boundary condition 3(0o) will then modify the covariance of 
the Gaussian variables (O--No+l--O--No),'", (Ouo--OUo i)" The elements of 
the new covariance matrix may be computed by examining the triplet 
(0i+ 1 - r  (~bj+ l - 0 j ) ,  00, whose covariance matrix is of the form 

A + O(1/N) O(1/N) O(1) \ 

O(1/N) A+O(1/N)  O(1)J 

O(1) O(1) O(N) /  

To obtain the inverse covariance of 0 i + l - - 0 i  and 0 j + l - r  con- 
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ditioned by ~bo= 0, it remains to invert the above matrix and take the 
appropriate elements. This leads to 

B+O(1/N) O(I/N) '] 
O(1/N) B+ O(1/N)/ 

where B is a positive constant. As N ~  o% we therefore get the random 
walk with independent increments as previously announced. This concludes 
the proof of our lemma. II 

We are now able to give the microscopic proof of the generalized 
Young relation within the particular model we consider. For  definiteness, 
we shall present it in the following compact form: 

T h e o r e m  2. Consider a droplet of volume V, whose length N e  N 
and shape (h 0, hi,..., hN)E R N+ 1 are subject to the probability distribution 

2 l exp --fl(GBW--O'Aw) N-- fl E [J2+Jl(hi+l -hi)2] 
0 

x 6 h i -  V 6(ho) 3(hN) [ t  dhi (43) 
0 

where 

;oO  { 2 . . . .  dhiexp --fl(aew--ffAW) N 
N = I  0 

-- fl ~ [J2+Jl(h~+~+h~)  2] (~ h , -  V 3(ho) 3(hN) 
0 

(44) 

and fl, J1, J2, asw, aAw are such that the droplet is expected to wet 
partially the wall, i.e., 

1 flJ1 
J 2 + ~ l o g  r~ >aAw--aew (45) 

For a large volume V, the most probable droplet has a contact angle 0 
with the wall that satisfies the generalized Young relation 

dff AB 
cos 0OAR(0) sin 0 d 0 -  (0) = r W-- aBw (46) 

where aAB(0) has been defined in (14) and computed in (25). 
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Comment. Let (he ..... hN) be the most probable droplet of volume V. 
The contact angle 0 will be defined in the following macroscopic way. 
Choose a sequence of points j(V) on the x axis that goes to infinity as 
V--, + oo in such a way that j(V) remains small with respect to the length 
of the most probable droplet: 

We shall have 

j(V) V- 1/2 __+ 0 as V--+ oo 

hj/j~tgO as j ~  (47) 

in probability (Fig. 9). This definition of the contact angle is physically 
satisfying, but requires a proof, as follows: 

Proof. For each N, we shall prove that the most probable profile is 
parabolic (fluctuations will be of order V~/4). We shall then show that the 
statistical sum over N is peaked near some value N(V) ~ V 1/2, and that the 
corresponding profile has a contact angle with the wall that satisfies (46). 

Let us first compute the partial sum conditioned by N: 

ZN,~,=exp(-~TN) I ~ dh, exp -~J~ ~ (h,+~ h~) 2 
0 0 

with 

7=~Bw--~rAw+ J2 

The Gaussian model considered here has the very special feature that the 
profile that minimizes the energy also minimizes the free energy. Therefore 
it will be convenient to use the variable ~b i defined by 

hi= h~/ + (~i 

- X 

Fig. 9 

822/47/5-6-16 
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where h~ ~ is given by 

This substitution leads to 

6V N - i  
h ~ - i - -  i N 2 -  1 N (48) 

{ v2 I Zu, v=exp - f l T N -  12fiJ~-~ 1 

x -h; h~ I]dr  --flJ1 

+ 

N 1  1 
Z (r - CJ)~ 
0 

(49) 

Using the standard diagonalization of Berlin and Kac, (4) it is easily 
established that 

+cO +cO I N l 1 (No~ 1 ~J) logf  d O o ' " f  dCNexp --flJ1 E (0/+1 -0/)2 ~(~0--~N)~ 
-- --oo 0 

The constraint Cu = 0 present in (49) will give a correction of the order of 
logN/N: this can be proved in exactly the same way as in the proof 
of Theorem 1. To evaluate (49) using (50), it remains to consider the limits 
of integration. Since we have 

ff+oo ... f+ce I N 1 __ ~j)2] ( ~ / ) }  t,; ',• 1] dCj exp - f l J ,  ~, (@.]+1 (~(~0) •(0N) 6 @i 
j 0 

• "'" l~dCjexp --flJ1 (r 2 6(r162 r 
-~  j ~ 0 

= - 1 z ( r  

where ( . )  has been defined in (38), we easily obtain, using (40), that 

V 2 N,  flJl 
lOg ZN.v= - f l ?N-12 f i J l  ~ 5 - ~ l o g - - s  O(log N) (51) 

For a large volume V, the statistical sum over N 

~--~- E ZN, V 
N>~ 2 
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will therefore have a maximum near 

N ( V ) =  7 +~-~ log (52) 

with fluctuations of order 

< I N -  N( V)] 2 > v = O( V t/2) 

where <-> v denotes the mean value of �9 with respect to the probability 
distribution (43). The corresponding classical profile (48) has a contact 
angle given asymptotically by [cf. (47)] 

6V 
0 = arctg N(V) 2 

i.e., 

0 = arctg [~_71 (7 . 1 ,  flJl~l/2  -y log )j (53) 

which indeed satisfies the relation (46). 
That the contact angle 0 is indeed given by (53) requires some further 

developments. This constitutes the following part of the proof. 
Let us first consider the fluctuations of the interface with respect to 

(h;, h~, .... h~) for a fixed value of N. We shall in fact prove that they are 
microscopic: 

( ( ( h i -  h~)2 >> = O(j) (54) 

where << �9 )> has to be computed with respect to the probability distribution 
given in (43) for a fixed value of N. 

In terms of the variables ~b/, one gets 

<( ( h / -  h}) 2 >) = <~b~)~(~bl >~ -h~ and---  and ~N l >~ --h~, _~ ) > 
< - - ~ 1 ~  -h'~ ---wan--J? a~--d-~b77_] ~----h%_------~i>- 

where <-> refers to the probability distribution given in (38). Using 
Lemma 2, it is easily obtained that 

1 
<< ( h i -  hi:)2 >> < -  <~bj2 > 

a 

where a is independent of N. Writing the boundary condition cS(~bo)6(q~N) 
as 6(% o -  ~bu)6(~o), we get 

= < yl 
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with obvious conditional notations. Use of Lemma 1 leads to 

<~1~o=O>~ = <~>,, <~o~j>~ 

the rhs of which can be computed exactly. The result is 

1 N 1 1 <~2>,, 
4flJ,----N k22=l 1 -- COS(2r&/N) 

1 N 1 COS(2rckj/N) 

(~b~ e = 4flJ1N k= 1 1 - cos(2rck /N)  

It is then straightforward to show that for 1 < j ~ N we have 

( (92 [ ~o = O > p = O ( j )  

This leads to 

where j has to be kept small with respect to the length of the drop (x/V). 
This ensures that 

h:/i in probability ) const 
I~ a i ~ co, V ~ o:~ 

which by definition (47) is equal to tg 0. This achieves the proof. | 

In addition to the generalized Young relation, we can also prove the 
validity of the fundamental relation (3), which was the basis of the ther- 
modynamical analysis in Section 2. Here it takes the form 

l o g  Z N ,  V = ~ O A B ( O ( I ) )  d l +  N ( ~ r s w -  aAW) + O(1og N) (55) 

where the integration is along the parabola 

6V 
hC(x) = N ( N  2 -- 1 ) x ( N - -  x )  (56) 

The validity of (55) is established by computing separately the lhs with (51) 
and the rhs with (25) and (56). 
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